Website is intended for physicians
Search:
Всего найдено: 20

 

Abstract:

Introduction: left atrial (LA) volumes measured during different phases of the cardiac cycle can be used for the evaluation of the LA functional properties before and after catheter ablation (CA). Increase of LA ejection fraction (EF) supposed to be early and more sensitive marker of LA reverse remodeling process, than LA volume and can be important for assessing the effectiveness of CA.

Aim: was to estimate volumetric parameters and function of LV before and after cryo- and radiofrequency catheter ablation of pulmonary veins in patients with paroxysmal atrial fibrillation.

Materials and methods: 21 patients with paroxysmal atrial fibrillation (AF) were included in study. All patients underwent multidetector computed tomography (MDCT) of pulmonary veins (PV) and LA before CA and 12±2 months after CA. 3-dimensional images at phases 0%, 40%, 75% of the cardiac cycle were used to assess LA functional properties.

Results: LA maximal volume before CA was increased insignificantly in patients with AF recurrence (124,52±38,22 ml vs. 117,89±23,94 ml, p>0,05). In patients without recurrence after CA, LA volumes decreased slightly (LA max 115,31±20,13 ml, p>0,05, LA min 73,43±14,91 ml, p>0,05), while in patients with recurrence increased (LA max 130,88±25,20 ml, p<0,05, LA min to 94,92±31,75 ml, p<0,05). Global LA ejection fraction was less in patients without recurrence before CA (22,37%±4,69 vs. 31,31%±9,89, p=0,013), but increased significantly after CA, while in patients with recurrence global LA EF was without relevant changes (36,54%±3,27 vs. 28,89%±9,41, p=0,011).

Conclusion: improved left atrial mechanical function was demonstrated in patients without any recurrence after ablation. The anatomic and functional reverse remodeling was not significant in patients with atrial fibrillation recurrence.

  

 

References

1.     Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. Int J Stroke. 2021; 16(2): 217-221.

https://doi.org/10.1177/1747493019897870

2.     Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021; 42(5): 373-498.

https://doi.org/10.1093/eurheartj/ehaa612

3.     Hindricks G, Sepehri Shamloo A, Lenarczyk R, et al. Catheter ablation of atrial fibrillation: current status, techniques, outcomes and challenges. Kardiol Pol. 2018; 76(12): 1680-1686.

https://doi.org/10.5603/KP.a2018.0216

4.     Artjuhina EA, Revishvili ASh. New technologies in the treatment of cardiac arrhythmias. Vysokotehnologichnaja medicina. 2017; 1: 7-15 [In Russ].

5.     Darby AE. Recurrent Atrial Fibrillation After Catheter Ablation: Considerations For Repeat Ablation And Strategies To Optimize Success. J Atr Fibrillation. 2016; 9(1): 1427.

https://doi.org/10.4022/jafib.1427

6.     Murray MI, Arnold A, Younis M, et al. Cryoballoon versus radiofrequency ablation for paroxysmal atrial fibrillation: a meta-analysis of randomized controlled trials. Clin Res Cardiol. 2018; 107(8): 658-669.

https://doi.org/10.1007/s00392-018-1232-4

7.     Kuck KH, Brugada J, F?rnkranz A, et al. Cryoballoon or Radiofrequency Ablation for Paroxysmal Atrial Fibrillation. N Engl J Med. 2016; 374(23): 2235-2245.

https://doi.org/10.1056/NEJMoa1602014

8.     Mathew ST, Patel J, Joseph S, et al. Atrial fibrillation: mechanistic insights and treatment options. Eur J Intern Med. 2009; 20(7): 672-81.

https://doi.org/10.1016/j.ejim.2009.07.011

9.     Vasamreddy CR, Lickfett L, Jayam VK, et al. Predictors of recurrence following catheter ablation of atrial fibrillation using an irrigated-tip ablation catheter. J Cardiovasc Electrophysiol. 2004; 15(6): 692-697.

https://doi.org/10.1046/j.1540-8167.2004.03538.x

10.   Tops LF, Bax JJ, Zeppenfeld K, et al. Effect of radiofrequency catheter ablation for atrial fibrillation on left atrial cavity size. Am J Cardiol. 2006; 97(8): 1220-1222.

https://doi.org/10.1016/j.amjcard.2005.11.043

11.   Tsao HM, Hu WC, Wu MH, et al. The impact of catheter ablation on the dynamic function of the left atrium in patients with atrial fibrillation: insights from four-dimensional computed tomographic images. J Cardiovasc Electrophysiol. 2010; 21(3): 270-277.

https://doi.org/10.1111/j.1540-8167.2009.01618.x

12.   Abhayaratna WP, Seward JB, Appleton CP, et al. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol. 2006; 47(12): 2357-2363.

https://doi.org/10.1016/j.jacc.2006.02.048

13.   Hoit BD. Left atrial size and function: role in prognosis. J Am Coll Cardiol. 2014; 63(6): 493-505.

https://doi.org/10.1016/j.jacc.2013.10.055

14.   Costa FM, Ferreira AM, Oliveira S, et al. Left atrial volume is more important than the type of atrial fibrillation in predicting the long-term success of catheter ablation. Int J Cardiol. 2015; 184: 56-61.

https://doi.org/10.1016/j.ijcard.2015.01.060

15.   Avelar E, Durst R, Rosito GA, et al. Comparison of the accuracy of multidetector computed tomography versus two-dimensional echocardiography to measureleft atrial volume. Am J Cardiol. 2010; 106(1): 104-109.

https://doi.org/10.1016/j.amjcard.2010.02.021

16.   K?hl JT, L?nborg J, Fuchs A, et al. Assessment of left atrial volume and function: a comparative study between echocardiography, magnetic resonance imaging and multi slice computed tomography. Int J Cardiovasc Imaging. 2012; 28(5): 1061-1071.

https://doi.org/10.1007/s10554-011-9930-2

17.   Hof I, Chilukuri K, Arbab-Zadeh A, et al. Does left atrial volume and pulmonary venous anatomy predict the outcome of catheter ablation of atrial fibrillation? J Cardiovasc Electrophysiol. 2009; 20(9): 1005-1010.

https://doi.org/10.1111/j.1540-8167.2009.01504.x

18.   Abecasis J, Dourado R, Ferreira A, et al. Left atrial volume calculated by multi-detector computed tomography may predict successful pulmonary vein isolation in catheter ablation of atrial fibrillation. Europace. 2009; 11(10): 1289-1294.

https://doi.org/10.1093/europace/eup198

19.   Amin V, Finkel J, Halpern E, et al. Impact of left atrial volume on outcomes of pulmonary vein isolation in patients with non-paroxysmal (persistent) and paroxysmal atrial fibrillation. Am J Cardiol. 2013; 112(7): 966-970.

https://doi.org/10.1016/j.amjcard.2013.05.034

20.   Lemola K, Sneider M, Desjardins B, et al. Effects of left atrial ablation of atrial fibrillation on size of the left atrium and pulmonary veins. Heart Rhythm. 2004; 1(5): 576-581.

https://doi.org/10.1016/j.hrthm.2004.07.020

21.   Park MJ, Jung JI, Oh YS, et al. Assessment of the structural remodeling of the left atrium by 64-multislice cardiac CT: comparative studies in controls and patients with atrial fibrillation. Int J Cardiol. 2012; 159(3): 181-186.

https://doi.org/10.1016/j.ijcard.2011.02.053

22.   Lemola K, Desjardins B, Sneider M, et al. Effect of left atrial circumferential ablation for atrial fibrillation on left atrial transport function. Heart Rhythm. 2005; 2(9): 923-928.

https://doi.org/10.1016/j.hrthm.2005.06.026

23.   Perea RJ, Tamborero D, Mont L, et al. Left atrial contractility is preserved after successful circumferential pulmonary vein ablation in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 2008; 19(4): 374-379.

https://doi.org/10.1111/j.1540-8167.2007.01086.x 

 

Abstract:

Article is devoted to a problem of radiation dose during multi-spiral computed tomograpy of abdominal cavity. This review describes the basic and additional methods of reducing the radiation exposure at CT with intravenous contrast enhancement. Results of researches conducted in recent years were considered and analyzed. Nuances of reduction of radiation exposure in specific cases were analyzed. Prospects of reducing the dose of contrast agent in abdominal MDCT with IV contrast media administration were estimated. The importance of control of radiation exposure of patients is proved.

 

References

1.      Mettle Г F.A., Jr. Bhargavan M., Faulkner K., Gilley D.B. et al. Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources-1950-2007. Radiology. 2009; (253): 520-531.

2.      National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States (NCRP Report No 160) // National Council on Radiation Protection and Measurements. - 2009.

3.      Brenner D.J. Minimising medically unwarranted computed tomography scans. Ann ICRP. 2012 Oct-Dec; 41(3- 4):161-169.

4.      Ng M., Fleming T., Robinson M, Thomson B. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 Aug 30; 384(9945): 746.

5.      Yu L., Fletcher J.G., Grant K.L., Carter R.E. et al. Automatic Selection of Tube Potential for Radiation Dose Reduction in Vascular and Contrast-Enhanced Abdominopelvic CT. Medical physics 37.1 (2010): 234-243.

6.      Yanaga Y, Awai K., Nakaura T., Utsunomiya D. et al. Hepatocellular Carcinoma in Patients Weighing 70 kg or Less: Initial Trial of Compact-Bolus Dynamic CT With Low-Dose Contrast Material at 80 kVp. AJR Am J Roentgenol. 2011 Jun;196(6): 1324-1331.

7.      Hur S., Lee J.M., Kim S.J., Park J.H. et al. 80-kVp CT using Iterative Reconstruction in Image Space algorithm for the detection of hypervascular hepatocellular carcinoma: phantom and initial clinical experience. Korean J Radiol.(2012);13: 152-164.

8.      Winklehner A., Karlo C., Puippe G., Schmidt B. Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol. 2011 Dec;21(12): 2521-2526.

9.      Brenner D.J., Hall E.J. Computed tomography an increasing source of radiation exposure. N Engl J Med. 2007 Nov 29; 357(22): 2277-2284.

10.    Scialpi M., Cagini L., Pierotti L., De Santis F. et al. Detection of small (<2 cm) pancreatic adenocarcinoma and surrounding parenchyma: correlations between enhancement patterns at triphasic MDCT and histologic features. BMC Gastroenterol. 2014 Jan (21): 14-16.

11.    Cabrera F., Preminger G.M., Lipkin M.E. As low as reasonably achievable: Methods for reducing radiation exposure during the management of renal and ureteral stones. Indian J Urol. 2014 Jan; 30(1): 55-59.

12.    Marin D., Choudhury K.R., Gupta RT, Ho L.M. et al. Clinical impact of an adaptive statistical iterative reconstruction algorithm for detection of hypervascular liver tumours using a low tube voltage, high tube current MDCT technique. Eur Radiol. 2013; (23): 3325-3335.

13.    Baker M.E., Dong F., Primak A., Obuchowski N.A. et al. Contrast-to-noise ratio and low-contrast object resolution on full- and low-dose MDCT: SAFIRE versus filtered back projection in a low-contrast object phantom and in the liver. AJR Am J Roentgenol. 2012 Jul; 199(1): 8-18.

14.    Li Q., Gavrielides M.A., Zeng R., Myers K.J. et al. Volume estimation of low-contrast lesions with CT: a comparison of performances from a phantom study, simulations and theoretical analysis. Phys Med Biol. 2015 Jan 21; 60(2): 671-688.

15.    Noda Y, Kanematsu M., Goshima S., Kondo H. et. al. Reducing iodine load in hepatic CT for patients with chronic liver disease with a combination of low-tube- voltage and adaptive statistical iterative reconstruction. Eur J Radiol. 2015 Jan; 84(1): 11-18.

16.    Noda Y, Kanematsu M., Goshima S., Kondo H. et. al. Reduction of iodine load in CT imaging of pancreas acquired with low tube voltage and an adaptive statistical iterative reconstruction technique. J Comput Assist Tomogr. 2014 Sep-Oct;38(5): 714-20.

17.    Choi J.W., Lee J.M., Yoon J.H., Baek J.H. et al. Iterative reconstruction algorithms of computed tomography for the assessment of small pancreatic lesions: phantom study. J Comput Assist Tomogr. 2013; (37): 911-923.

18.    Desmond A.N., O’Regan K., Curran C., McWilliams S. et al. Crohn’s disease: factors associated with exposure to high levels of diagnostic radiation. Gut. 2008 Nov; 57(11): 1524-1529.

19.    Patino M., Fuentes J.M., Singh S., Hahn P.F. et al. Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation. AJR Am J Roentgenol. 2015 Jul; 205(1): W19-31.

20.    Lambert L., Ourednicek P., Jahoda J., Lambertova A. et al. Model-based vs hybrid iterative reconstruction technique in ultralow-dose submillisievert CT colonography. Br J Radiol. 2015 Apr; 88(1048): 20140667.

21.    Fletcher J.G., Hara A.K., Fidler J.L., Silva A.C. Observer performance for adaptive, image-based denoising and filtered back projection compared to scanner-based iterative reconstruction for lower dose CT enterography. Abdom Imaging. 2015 Jun; 40(5): 1050-1059.

22.    Habibzadeh M.A., Ay M.R., Asl A.R., Ghadiri H. et al. Impact of miscentering on patient dose and image noise in x- ray CT imaging: phantom and clinical studies. Phys Med. 2012 Jul; 28(3): 191-199.

23.    Goo H.W. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol. 2012 Jan-Feb; 13(1): 1-11.

24.    Aznaurov V.G., Kondratiev E.V., Oganesyan N.K., Karmazanovsky G.G. MSKT gepatopankreatoduodenalnoj zony s ponizhennoj luchevoj nagruzkoj: opyt prakticheskogo primenenija. [Low-Dose Hepatopancreatic MDCT: Practical Experience of Applicability]. Medical Visualization. 2017 ;(2): 28-35 [In Russ.].

 

Article exists only in Russian.

 

Abstract:

Acute severe pancreatitis is the most severe disease in urgent abdominal surgery In these conditions - diagnosis and treatment of this group of patients remains a high priority issue of urgent surgery and intensive care therapy It is extremely important to estimate severity of local changes and general conditions of patient in order to draw up efficient disease management and forecast the outcome of the disease. It can be done by the use of different scoring systems of severity: J.H.C. Ranson, Glasgow (Imrie), SOFA, APACHE I or II, SAPS, MODS and others. Instrumental methods of investigation are used to examine scale and type of disease of pancreas, retroperitoneum and abdominal: laparoscopy, ultrasonography, computed tomography (CT), magnetic resonance imaging. It is generally recognized that the most informative methods of diagnosis of acute severe pancreatitis and its complications are ultrasound diagnostics and computed tomography In 2008 in Mumbai the Acute Pancreatitis Classification Working Group identified two types of classification - clinical and morphological, the last is based on beam diagnostics. Clinical classification is used during the early stage of disease (within the first week of acute pancreatitis manifestation), morphological classification is applicable to the subsequent stage (usually after the first week of illness). This allows radiologists to describe the «morphology» while clinicians include the results of the examination into the overall clinical picture and draw up the plan of appropriate treatment.

 

 

 

Abstract:

The basis of computed tomography diagnosis is the definition of densitometric parameters at different phases of the study.

Aim. Was to perform comparative analysis of computed tomography features of focal nodular hyperplasia and hepatocellular carcinoma.

Materials and methods. During the reseach clinical and morphological comparisons were performed on the base of 36 patients’ CT’s results: 21 patient with hepatocellular carcinoma (HCC) and 15 patient with focal nodular hyperplasia of the liver without associated liver cirrhosis. At the preoperative stage all patients underwent spiral computed tomography with bolus contrast enhancement (on the four phases of the study).

Results. During native phase of computed tomography HCC nodes are more often hipodense irrespective of the degree of histological differentiation and focal nodular hyperplasia - izodense. After intravenous injection of contrast agent, computed tomography picture of hepatocellular carcinoma and focal nodular hyperplasia depended on the phase of the study During the arterial phase tissue of focal nodular hyperplasia in the vast majority of cases was hiperdense relative to the surrounding liver parenchyma. Hepatocellular carcinoma had similar values much less frequently in contrast to the focal nodular hyperplasia. The venous phase was characterized by the presence of hiperdense characteristics in focal nodular hyperplasia areas and, conversely, in hepatocellular carcinoma tissue signs of hiperdense were not observed. Hyperdence formations in delayed phase of computed tomography indicate the presence of focal nodular hyperplasia, and vice versa, hypodense are sufficient to prevent its presence.

Conclusion. Estimation of densitometric parameters of focal nodular hyperplasia and hepatocellular carcinoma allows to determine features of computed tomography imaging of tumors at different phases of the examination, and this allows to make a differential diagnosis between them.

 

 


 

Article exists only in Russian.


 

Article exists only in Russian.


 

Article exists only in Russian.


Article exists only in Russian.


Article exists only in Russian.

 

Abstract:

The article presents literature data about splenic lesions, their morphological characteristics and occurrence. Methods of diagnostics of such lesions are considered. Rarely met pathology as lymphangioma of spleen is discussed. Article describes peculiarities of clinical and morphological classifications of lymphangiomas with different locations, their morphological structure, clinical features of this disease in children and adults. Detailed diagnostic algorithm for detection of splenic lymphangioma is described. Possibilities and advantages of modern methods of diagnostic testing, perspective and the leading role CT and MRI are described. Complexities in diagnostics were noted during the research; optimal combinations of diagnostic methods for better verification of such spleen lesions, for estimation of certain anatomical relation with other structures and tissues, spread of the affected area, as well as an assistance in definition of surgical tactics and volume of intervention, based on data were offered. Application of new technologies with the use SCT-dimensional reconstruction of the affected organ and area of further operation, and the 3D planning of intervention, conducting virtual operations for the optimal access, volume of interventions on the base of individual characteristics of vascular and anatomical features of the patient - gives significant advantages. Review of possible treatment methods is presented. As a case report we used obtained data of 26-years woman with identified during ambulatory ultrasound diagnostics lymphangioma of spleen. In conclusion it is pointed that early and accurate diagnostics is important for prevention of complications and for reduce of operational trauma.

 

References 

1.    Kubyshkin V.A., Ionkin D.A. Opuholi i kisty selezenki [Tumors and cysts of spleen] M.: Medpraktika- M, 2007 [In Russ].

2.    Cappellani A., Zanghi A., Di Vita M. et al. Spontaneous rupture of a giant hemangioma of the liver. Ann. Ital. Chir. 2000; 71: 379-383.

3.    Daltrey I.R., Johnson C.D. Cystic lymphangioma of the pancreas. Postgrad. Med. J. 1996; 72(851): 564-566.

4.    Panferova T.R. Jehografija v kompleksnoj diagnostike zabrjushinnyh vneorgannyh opuholej u detej . [Ultrasonography in complex diagnostics of retroperitoneal extraorganic tumors in children] Avto-ref. dis. kand. med. nauk. M., 1998 [In Russ].

5.    Brian K.P., Goh M., Y-Meng Tan et al. Intra-abdominal and retroperitoneal ymphangiomas in pediatric and adult patients. WTd J. Surg. 2000; 29: 837-840.

6.    Konen O., Rathans V., Dingy E. et al. Childhood abdominal cystic lymphangioma. Pediatr. Radiol. 2002; 32: 88-94.

7.    Christie J.P., Karlan M.S. Lymphangioma of the pancreas with symptoms of «acute surgical abdomen». Calif Med. 1969; 111(1): 22-24.

8.    Umap P. Intra! abdominal cystic lymphangioma. IndianJ. Cancer 1994; 31: 111-113.

9.    Volobuev N.N., Tihonov K.S., Minajkin V.I. Gigantskaja kistoznaja limfangioma brjushnoj polosti. Hirurgija. [Giant cystic lymphangioma of abdominal cavity] 1989;5: 127-128 [In Russ].

10.  Faul J.L., Berry G.J., Colby T.V. et al. Thoracic lymphangiomas, lymphangiectasis, lymphangiomatosis and lymphatic dysplasia syndrome. Am. J. Respir. Crit. Care Med. 2000; 161: 1037-1046.

11.  Wegner G. Veber Lymphangiome. Arch. Klin. Chir. 1877; 20: 641.

12.  Matjunin V.V. Limfangiomy cheljustno-licevoj oblasti u detej. [Lymphangiomas of maxillofacial area in children] Dissertation for degree of Doctor of Philosophy. M., 1993;150 [In Russ].

13.  Takeuchi Y., Fujinami S., Kitagawa S. et al. Laparoscopic observation of retroperitoneal cystic lymphangioma. J. Gastroenterol. Hepatol. 1994; 9(2): 198-200.

14.  Bliss D.P. Jr., Coffin C.M., Bower R.J. et al. Mesenteric cysts in children. Surgery. 1994; 115: 571-577.

15.  Hancock B.J., St. Vil D., Luks F.I. et al. Complication of lymphangiomas in children. J. Pediatr. Surg. 1992; 27(2): 220-226.

16.  Kurtz R.J., Heimann T.M., Holt J. et al. Mesenteric and retroperitoneal cysts. Ann. Swrg. 1986; 203: 109-111.

17.  Chou Y.H., Tiu C.M., Lui W.Y. et al. Mesenteric and omental cysts: an ultrasonographic and clinical study of 15 patients. Gastrointest. Radiol. 1991; 16: 311-314.

18.  Stepanova Ju.A. Diagnostika neorgannyh zabrjushinnyh obrazovanij po dannym kompleksnogo ul'trazvukovogo issledovanija: [Diagnostics of retroperitoneal newgrowth: complex US diagnostics.] Dissertation for degree of Doctor of Philosophy.M., 2002 [In Russ].

19.  Karmazanovskij G.G., Fedorov V.D. Kompjuternaja tomografija podzheludochnoj zhelezy i organov zabrjuwinnogo prostranstva [CT of pancreas and retroperitoneal organs]. M.: Paganel', 2000 [In Russ].

20.  Melihova M.V. Differencial'no diagnosticheskie vozmozhnosti spiral'noj kompjuternoj tomografii s boljusnym kontrastnym usileniem pri neorgannyh zabrjushinnyh obrazovanijah. [MCST with bolus contrast encashment in differential diagnostics of extraorganic retroperitoneal newgrowth.] Dissertation for degree of Doctor of Philosophy. M., 2005 [In Russ].

21.  Leung T.K., Lee C.M., Shen L.K., Chen Y.Y. Differential diagnosis of cystic lymphangioma of the pancreas based on imaging features. J. Formos. Med. Assoc. 2006; 105(6): 512-517.

22.  Khandelwal M., Lichtenstein G., Morris J. et al. Abdominal lymphangioma masquerading as a pancreatic cystic neoplasm. J. Clin. Gastmenterol. 1995; 20: 142-144.

23.  Casadei R., Minni F., Selva S. et al. Cystic lymphangioma of the pancreas: anatomoclinical, diagnostic and therapeutic consideration regarding three personal observations and review of the literature. Hepatogastroenterology. 2003; 50(53): 1681-1686

Modern aspects of radiation diagnosis of pulmonary emphysema (literature review)



DOI: https://doi.org/10.25512/DIR.2012.06.1.12

For quoting:
Sokolova E.A., Karmazanovsky G.G. "Modern aspects of radiation diagnosis of pulmonary emphysema (literature review) ". Journal Diagnostic & interventional radiology. 2012; 6(1); 87-96.


 

Article exists only in Russian.


 

Article exists only in Russian.

 

 

Abstract:

Acute severe pancreatitis remains one of the actual issue in urgent surgery Forecast of the disease is dependant on spread of purulent necrotic process in pancreas and retroperitoneal tissues. Therefore diagnosis of purulent complications becomes extremely important.

The aim of the study was to demonstrate and evaluate features of ultrasonography in diagnosis and treatment strategy definition of purulent necrotic complications of acute severe pancreatitis.

Materials and methods. The study included 115 patients with acute destructive pancreatitis aged of 21-81 years The major part of them (50%) were persons at most able-bodied (working) aged 32-59 years. All patients underwent ultrasound diagnostics for determination the spread of pathology and detection of complications of the disease.

Ultrasound scanning was carried out as follows:

1. inspection of pancreatic parenchyma;

2. inspection of cellular tissues;

3. detection of free liquid in the abdominal cavity;

4. evaluation of the abdomen and kidneys;

5. inspection of the pleural cavity

Results. Examination of the parenchyma revealed that the pancreas was often inlarged, had a fuzzy, uneven contours and heterogeneous structure. However, it should be noted that in some cases, the pancreas was normal size and structure. Infected necrosis, acute liquid accumulation and/or free liquid in the abdominal cavity had occurred in 100% of cases in various combinations during examination of cellular tissues. Regarding the abdominal organs following complications were revealed: obstructive jaundice - in 5(4.3%) cases; portal vein thrombosis - in 1 (0.9%) case; splenic abscess - in 1 (0.9%) case. The presence of liquid in the pleural cavity was determined by leaves dissociation of the parietal and visceral pleura. The volume of the liquid was determined according standard classification.

Conclusion. Ultrasound scanning allows to determine the presence and extent of local complications arising at the stage of purulent necrotic complications of acute severe pancreatitis and general complications as a result of systemic pathological effect on the body of the disease.

 

References

1.     Охотников О.И. Перкутанная диапевтика в неотложной абдоминальной хирургии органов панкреато-билиарной зоны. Автореф. ... дис. докт. мед. наук. Воронеж. 1998; 39 с.

2.     Echenique A.M., Sleeman D., Yrizarry J. et al. Percutaneous catheter-directed debridement of infected pancreatic necrosis in 20 patients. J. Vase. Interv. Radiol. 1998; 9: 565-571.

3.     Затевахин И.И., Цициашвили М.Ш., Будурова М.Д. Комплексное ультразвуковое исследование при остром панкреатите. Анналы хирургии. 1999; 3: 36-42.

4.     Scaglione M., Casciani E., Pinto A. et al. Imaging Assessment of Acute Pancreatitis. Semin Ultrasound CT MRI. 2008; 29:322-340.

5.     Багненко С.Ф., Курыгин А.А., Синенченко ГИХирургическая панкреатология. Санкт-Петербург: Речь. 2009; 608 с.

6.     Loser C., Folsch U.R. Acute pancreatitis: medical and endoscopic treatment. Pancreatic disease. State of the art and future aspects of research. 1998; 12: 66-78.

7.     Martines-Noguera A., Mohtserat E., Torruba S. etal. Ultrasound of the pancreas: update and controversies. Eur. Radiol. 2001; 11: 1594-1606.

8.     Mortele KJ, Girshman J, Szejnfeld D, et al. CT-guided percutaneous catheter drainage of acute necrotizing pancreatitis: clinical experience and observations in patients with sterile and infected necrosis. AJR Am. J. Roentgenol. 2009; 192(1): 110-116.

9.     Kumar P., Mukhopadhyay S., Sandhu M. et al. Ultrasonography computed tomography and percutaneous intervention in acute pancreatitis: A serial study. Austral. Radiology. 1995; 39(2): 145-152.

10.   Balthazar E.J., Freeny P.C., van Sonnenberg E. Imaging and intervention in acute pancreatitis. Radiology. 1994; 193: 297-306.

11.   Mortele K.J., Wiesner W., Intriere L. et al. Modified CT severity index for evaluating acute pancreatitis: improved correlation with patient outcome. Am. J. Roentgenol. 2004; 183(5): 1261-1265.

12.   Bharwani N., Patel S., Prabhudesai S. et al. Acute pancreatitis: The role of imaging in diagnosis and management. Clinical Radiology.2011; 66: 164-175.

13.   De Waele J.J., Delrue L., Hoste E.A. et al. Extrapancreatic inflammation on abdominal computed tomography as an early predictor of disease severity in acute pancreatitis: evaluation of a new scoring system. SourcePancreas. 2007; 34 (2): 185-190.

14.   Биссет Р., Хан А. Дифференциальный диагноз при абдоминальном ультразвуковом исследовании. Пер. с англ. под ред. С.И. Пиманова. М.: Медицинская литература. 2001; 272 с.

15.   Бенсман В.М. Облегченные способы статистического анализа в клинической медицине. Краснодар: Издательство КГМА. 2002; 30 с.

16.   Кармазановский ГГ, Степанова Ю.А. Классификация острого панкреатита - современное состояние проблемы и нерешенные вопросы. Медицинская визуализация. 2011; 4: 133-137.

17.   Сидорова Ю.В., Шабунин А.В., Араблинский А.В., Шиков Д.В., Бедин В.В., Лукин А.Ю. Острый панкреатит: некоторые вопросы диагностики и лечения. Диагностическая и интервенционная радиология. 2011; 5(2): 15-26. 

 

 

Abstract:

Hepatocellular carcinoma (HCC) of liver is a widespread oncologic disease. The main risk factor of HCC development is liver cirrhosis. The aim of this article is to describe findings of HCCs in diagnostic imaging, including ultrasound, computed tomography, and magnetic resonance imaging. 

 

References

1.     Cruite I., Tang A., Sirlin C.B. Imaging-based diagnostic systems for hepatocellular carcinoma. Am.J. Roentgenol. 2013; 201(1): 41-55.

2.     Gomes M.A., Priolli D.G., Tralhro J.G., Botelho M.F. Hepatocellular carcinoma: epidemiology, biology, diagnosis, and therapies. Rev. Assoc. Med. Bras. 2013; 59(5): 514-524.

3.     Weinmann A., Koch S., Niederle I.M. et al. Trends in Epidemiology, Treatment, and Survival of Hepatocellular Carcinoma Patients Between 1998 and 2009: An Analysis of 1066 Cases of a German HCC Registry. J. Clin. Gastroenterol. 2013 Sep 25. [Epub ahead of print].

4.     Hyder O., Dodson R.M., Nathan H. et al. Referral patterns and treatment choices for patients with hepatocellular carcinoma: a United States population-based study. J. Am.Coll. Surg. 2013; 217(5): 896-906.

5.     Chamadol N., Somsap K., Laopaiboon V.. Sukeepaisarnjaroen W. Sonographic findings of hepatocellular carcinoma detected in ultrasound surveillance of cirrhotic patients. J. Med. Assoc. Thai. 2013; 96(7): 829-838.

6.     Семендяева М.И., Меркулов И.А., Пастухов А.И. с соавт. Гепатоцеллюлярная карцинома - день сегодняшний. Клиническая практика. 2013; 2: 35-49. Semendyaeva M.I., Merkulov I.A., Pastukhov A.I. et al. Hepatocellular carcinoma - day today's. Klinicheskaya praktika. 2013; 2: 35-49 [In Russ].

7.     Stepanova Yu.A. «Ultrasonic diagnostics of diseases of a liver» (manual). Ed. cor.-mem. of RAMSci L.S. Kokov. M.: «11-y FORMAT», 2013; 38-43 [In Russ].

8.     Willatt J.M., Hussain H.K., Adusumilli S. et al. MR Imaging of hepatocellular carcinoma in the cirrhotic liver: challenges and controversies. Radiology. 2008; 247(2): 311-330.

9.     Asham E.H., Kaseb A., Ghobrial R.M. Management of hepatocellular carcinoma. Surg. Clin. North. Am. 2013; 93(6):1423-1450.

10.   Marks W.M., Jacobs R.P., Goodman PC. et al. Hepatocellular carcinoma: clinical and angiographic findings and predictability for surgical resection. Am. J. Roentgenol. 1979; 132(1): 7-11.

11.   Bruix J., Sherman M., Llovet J.M. et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver, Barcelona September 15-17, 2000. 2001; 35(3): 421-430.

12.   Mayev I.V., Dicheva D.T., Zhilyaev E.V. et al. Difficulties of diagnostics of a hepatocellular carcinoma. Consilium Med. 2010; 8: 63-66 43 [In Russ].

13.   Ayuso C., Rimola J., Garcia-Criado A. Imaging of HCC. Abdominal Imaging. 2012: 37(23): 215-230.

14.   Colombo M., Ronchi G. Clinico-pathological features of hepatocellular carcinoma. Focal Liver Lesions Detection, Characterization, Ablation. Ed by Lencioni R., Cioni D., Bartolozzi C. Springer-Verlag. Berlin, Heidelberg, 2005;169-176.

15.   Forner A., Vilana R., Ayuso C. et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology. 2008; 47(1): 97-104.

16.   Pang R., Poon R.T. Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett. 2006; 242(2): 151-167.

17.   Tajima T., Honda H., Taguchi K. et al. Sequential hemodynamic change in hepatocellular carcinoma and dysplastic nodules: CT angiography and pathologic correlation. Am. J. Roentgenol. 2002; 178(4): 885-897.

18.   Sahani D.V., Holalkere N.S., Mueller PR. et al. Advanced hepatocellular carcinoma: CT perfusion of liver and tumor tissue — initial experience. Radiology. 2007; 243(3): 736-743.

19.   Kim YK., Kwak H.S., Kim C.S. et al. Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detector row CT Radiology. 2006; 238(2): 531-541.

20.   Iavarone M., Sangiovanni A., Forzenigo L.V. et al. Diagnosis of hepatocellular carcinoma in cirrhosis by dynamic contrast imaging: the importance of tumor cell differentiation. Hepatology. 2010; 52(5): 1723-1730.

21.   Di Benedetto N., Peralta M., Alvarez E. et al. Incidence of hepatocellular carcinoma in hepatitis C cirrhotic patients with and without HIV infection: a cohort study, 1999-2011. Ann. Hepatol. 2013 Jan-2014 Feb; 13(1): 38-44

22.   Okada M., Murakami T. CT Imaging Characteristics of Hepatocellular Carcinoma. In: Abdomen and Thoracic Imaging. Springer Science+Business Media New York. 2014; 317-346.

23.   Kim C.K., Lim J.H., Lee W.J. Detection of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver: accuracy of ultrasonography in transplant patients. J.Ultrasound. Med. 2001; 20(2): 99-104.

24.   Itoh Y, Akamatsu K. Relationships between echo level and histologic characteristics in small hepatocellular carcinomas. J. Clin. Ultrasound. 1998; 26(6): 295-301.

25.   Практическое руководство по ультразвуковой диагностике. Общая ультразвуковая диагностика. Под ред. В.В. Митькова. М. Видар. 2005; 33-132. Practical guidance on ultrasonic diagnostics. General ultrasonic diagnostics. Ed. V.V. Mitkov. M. Vidar. 2005; 33-132 43 [In Russ].

26.   Albrecht T., Blomley M., Bolondi L. et al. Guidelines for the use of contrast agents in ultrasound. Ultraschall. Med. 2004; 25(4): 249-256.

27.   Lencioni R., Cioni D., Bartolozzi C. Tissue harmonic and contrast-specific imaging: back to gray scale in ultrasound. Eur. Radiol. 2002; 12(1): 151-165.

28.   Kelekis N.L., Semelka R.C., Worawattanakul S. et al. Hepatocellular carcinoma in North America: a multi institutional study of appearance on T1-weigh- ted, T2-weighted, and serial gadolinium-enhanced gradient-echo images. Am. J. Roentgenol. 1998; 170(4): 1005-1013.

29.   Choi B.I. The current status of imaging diagnosis of hepatocellular carcinoma. Liver Transpl. 2004; 10 (Suppl 1): 20-25.

30.   Iannaccone R., Laghi A., Catalano C. et al. Hepatocellular carcinoma: role of unenhanced and delayed phase multi-detector row helical CT in patients with cirrhosis. Radiology. 2005; 234(2): 460-474.

31.   Kim C.K., Lim J.H., Park C.K. et al. Neoangiogenesis and sinusoidal capillarization in hepatocellular carcinoma: correlation between dynamic CT and density of tumor microvessels. Radiology. 2005; 237(2): 529-533 

 

 

Abstract:

Aim: was to study CT semiotic features of hepatocellular carcinoma (HCC) with varying degrees of differentiation in liver, unaffected by cirrhosis.

Materials and methods: the study is based on clinical and morphological comparisons of 29 patients (19 men and 10 women aged 19-68 years) suffering from HCC without associated cirrhosis. In the preoperative period all patients underwent multislice CT with bolus contrast enhancement (on four phases of the study). On CT scans were determined: localization, size, borders and structure of nodes, including features of the accumulation of contrast agent for determining the degree of histological differentiation.

Results: HCC had the appearance of a large solitary node, the average value of the largest diameter and the cross-sectional area amounted to 9.3 cm and 68.4 cm2 respectively in most of examined patients. In the native phase of CT quite distinct contour of the tumor node was determined in 40% of cases at highly differentiated and one-third of moderately differentiated HCC observations, at poorly differentiated variant contour is not expressed.The characteristic feature of CT HCC nodes is the heterogeneous nature of their internal structure, which is best visualized in the arterial phase. Most frequently in observations (in 67.6%) were detected areas of necrosis, rarely observed lesions sclerosis (23.5%) and calcifications (11.8%).

Conclusion: Computed tomographic characteristics of HCC in the absence of cirrhosis depenc on the phase of the study, and the degree of histological differentiation of tumors that should be considered in the differential diagnosis and prognosis of the disease.

 

References

1.     Siegel R., Ma J., Zou Z., Jemal A. Cancer Statistics, 2014. CA Cancer J Clin 2014; 64: 9-29.

2.     Trevisani F., Frigerio M., Santi V., Grignaschi A., Bernardi M.: Hepatocellular carcinoma in non-cirrhotic liver: a reappraisal. Dig. Liver Dis. 2010; 42: 341-347.

3.     Silva A.C., Evans J.M., McCullough A.E. et al. MR Imaging of hypervascular liver masses: A review of current techniques. RadioGraphics. 2009; 29: 385-402.

4.     Furlan A., Marin D., Vanzulli A. et al. Hepatocellular carcinoma in cirrhotic patients at multidetector CT: hepatic venous phase versus delayed phase for the detection of tumour washout. Brit. J. Radiology. 2011; 84: 403-412.

5.     American College of Radiology website. Liver Imaging Reporting and Data System. www.acr.org/Quality- Safety/Resources/LIRADS. Accessed March 21, 2014

6.     Theise N.D., Curado M.P., Franceschi S. et al. (Eds.) WHO classification of tumours of the digestive system. Lyon: IARC, 2010; 205-216.

7.     Di Martino M., Saba L., Bosco S. et al. Hepatocellular carcinoma (HCC) in non-cirrhotic liver: clinical, radiological and pathological findings. Eur. Radiol. 2014; 24: 1446-1454.

8.     Gaddikeri S., McNeeley M.F, Wang C.L. et al. Hepatocellular Carcinoma in the Noncirrhotic Liver. AJR. 2014; 203: W34-W47

9.     TNM: classification of malignant tumours, 7th ed. Ed by L.H. Sobin et al. Transl. and ed. A.I. Shchegolev. Moscow: Logosfera, 2011. [In Russ].

10.   Honda H., Onitsuka H., Murakami J. et al. Characteristic findings of hepatocellular carcinoma: an evaluation with comparative study of US, CT, and MRI. Gastrointest Radiol. 1992; 17: 245-249.

11.   Hofer М. CT teaching manual. A systemic approach to CT reading. 3rd ed. Stuttgart et al: Thieme, 2007.

12.   Tumanova U.N., Karmazanovsky G.G., Shchegolev A.I. Densitometric characteristics of hepatocellular carcinoma at spiral computed tomography. Medicinskaja vizualizacija. 2012; 6: 42-50. [In Russ].

13.   Kudo M. Imaging diagnosis of hepatocellular carcinoma and premalignant/borderline lesions. Semin. Liver Dis. 1999; 19: 297-309.

14.   Hayashi M., Matsui O., Ueda K. et al. Progression to hypervascular hepatocellular carcinoma: correlation with intranodular blood supply evaluated with CT during intraarterial injection of contrast material. Radiology. 2002; 225: 143-149.

15.   Bolondi L., Gaiani S., Celli N. et al. Characterization of small nodules in cirrhosis by assessment of vascularity: the problem of hypovascular hepatocellular carcinoma. Hepatology. 2005; 42: 27-34.

16.   Tumanova U.N., Dubova E.A., Karmazanovsky G.G., Shchegolev A.I. Computed tomographic evaluation of the blood supply hepatocellular carcinoma at the liver. Annaly hirurgicheskojgepatologii. 2013; 4: 53-60. [In Russ].

17.   Tumanova U.N., Dubova E.A., Karmazanovsky G.G., Shchegolev A.I. Comparative analysis of the degree of vascularization hepatocellular carcinoma and focal nodular hyperplasia of the liver according to the computed-tomography and morphological studies. Vestnik Rossijskoj Akademii medicinskih nauk. 2013; 12: 9-15. [In Russ].

18.   Nzeako U.C., Goodman Z.D., Ishak K.G. Hepatocellular carcinoma in cirrhotic and noncirrhotic livers. A clinic- histopathologic study of 804 North American patients. Am. J. Clin. Pathol. 1996; 105: 65-75.

19.   Shimada M., Hashimoto E., Taniai M. et al. Hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 2002; 37: 154-160.

20.   Smalley S., Moertel C., Hilton J. et al. Hepatoma in the noncirrhotic liver. Cancer. 1988; 62: 1414-1424.

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы